

OpreX[™]Data Acquisition

SMARTDAC+ Data Acquisition & Control

Paperless recorder GX/GP

Your business environment is complex and fast changing. You need smart and powerful systems that can adapt to your process. SMARTDAC+ is a fresh approach to data acquisition and control, with smart and simple touch operation as a design priority. Measure, display and record process data with greater levels of clarity, intelligence and accessibility.

2020

AI Future Pen

High withstand voltage

analog input module

PROFINET communication module

2022

Future Pen Equipment / Quality Easy Predictive Detection

- Multichannel measurement on up to 450 channels
- Pulse signal data acquisition with integration
- Supports high withstand voltage applications (600 V double insulation, 1000 VDC basic insulation)

Reliable technology

Proven reliability over a wide range of applications

(also supports plain text)

An intuitive UI engineered for ease-of-use

Smart User Interface

Efficiently search for key data

Easily review historical data

Seamless display of historical trends-flick or drag the trend display to scroll through the data, even during measurement.

Flick

Easily check off trouble spots

Write freehand messages

Immediately clear areas of concern with a hand-written message.

You can draw or hand-write on the waveform area using a stylus (standard accessory) or the tip of your finger. You can even select a color and line width. Alternatively, you can select from a list of preset messages.

Save and output image files

during the alarm. Search from a calend

Save trend waveforms of interest or screens displayed during alarms as image (PNG) files, and print them out at the same time.

Historical trend screen

Quickly find data using calendars and summary screens

From a calendar, jump to waveforms of a specific date.

From the alarm summary, jump to the waveform active

Check waveforms of concern in detail

Display digital values at any location Move the scale to display the value corresponding to that position as a numeric value. Instantly check maximum/minimum measured values.

[Patent technology]

Ascertain long-duration trends at a glance All historical trends display Long-duration trends can be fitted to a single screen for easy viewing.

All historical trends display

Zoom in/out - time axis and engineering units

The time axis and engineering axis can expanded and compressed using a simple pinch together or apart function.

Pinch apart / Pinch together

Create your own screens

Custom display (/CG option)

You can arrange display objects such as trend, numeric, and bar graphs any way you like to create monitor displays that are customized to the environment.

Start/stop pumps and perform other operations.

Custom display building software DAQStudio DXA170

DAQStudio is software for creating custom displays. You can load screens you created onto the GX/GP via Ethernet or external memory media (SD/USB) and display them.

Variety of display screens

Physical quantities are displayed and recorded on a log scale.

Alarm summary Message summary Memory summary Message 10 Message 10 Message 10 Message 10
 Recording

 Troper end
 F&223

 Power off
 F&222

 Auto save
 F&221

 State
 F&222

 Tropper end
 F&219

 Power off
 F&219

 Power off
 F&219

 Power off
 F&217

 Stop
 F&217

 Stop
 F&218

 Tropper end
 F&217

 Stop
 F&216
 Overview

Multi-panel display

You can select from 9 layouts, and save up to 20 configurations. (Multi panel available on the GX20/GP20 only)

Highly flexible and scalable architecture

Smart Architecture

Modular input/output

Inputs and outputs are modular for easy expandability. The GX/GP multichannel paperless recorder main unit alone provides up to 100 channels (GX20/GP20) of measurement.

Select from a wide variety of input /output modules.

GX90XA-10-U2		DC voltage, thermocouple, RTD, contact (solid state relay scanner type)	10	10
GX90XA-10-L1		DC voltage, thermocouple, contact (Low withstand voltage solid state relay scanner type)	10	10
GX90XA-10-T1*		DC voltage, thermocouple, contact (electromagnetic relay scanner type)	10	10
GX90XA-10-C1	Analog input module	DC current (mA) (solid state relay scanner type)	10	10
GX90XA-10-V1		DC voltage, thermocouple, contact (Solid state relay scanner type), High withstand voltage (600 V double insulation, 1000 VDC basic insulation)	10	10
GX90XA-04-H0*		DC voltage, thermocouple, RTD, contact (individual A/D type)	4	4
GX90XA-06-R1		4-wire RTD, 4-wire resistance (solid state relay scanner type)	6	6
GX90YA*	Analog output module	Current output	4	4
GX90XD*	Digital input module	Remote control input or operation recording	16	16
GX90YD*	Digital output module	Alarm output	6	6
GX90WD*	Digital input/output module	Remote control input or operation recording/alarm output	14	DI:8/DO:6
GX90XP	Pulse input Module	Pulse signal data acquisition, integral count	10	10
GX90UT*	PID control module	PID control (2 loop)	26	AI:2/AO:2 DI:8/DO:8

* = Mounting restrictions apply. See the general specifications for details. *1: Large memory model required if the total number of channels installed exceeds 100.

The I/O terminals are detachable.

Expandable to up to 450 channels (real actual input)

Supports up to 450 channels of measurement. Note that if MATH and communication channels are included, the GX20/GP20 large memory type can record on up to 1000 channels. The GX/GP main unit and expandable I/O can both use the same input/output modules.

Reduce wiring with distributed installation

When the recorder is installed offsite (away from the DUT), you can place the expandable I/O at the site and monitor data without the need for long-distance wiring of thermocouples and other sensors.

LAN cable (CAT5 or later) Chain up to 6 units

> The maximum distance between units is 100 m You connect directly with a LAN cable without connecting through a hub or repeater. and her states for the CM Data And Soliday Cont

* You can also connect subunits of the GM Data Acquisition System.							
GX10/GP10	Standard	100ch	Main unit only	0-30			
GX10/GP10	Stanuaru	100011	Main + expandable I/O	0-100			
	Standard	100ch	Main unit only	0-100			
GX20/GP20	Stanuaru	IUUCII	Main + expandable I/O	0-100			
GAZ0/GP20		450ch	Main unit only	0-100			
	Large memory	450011	Main + expandable I/O	0-450			

The number of channels is for analog input only.

Component Names

(/BC option)(GX)

(GP10/GP20)

A full range of network functions and software

Smart Functionality

Predictive monitoring with AI

Equipment/Quality Easy Predictive Detection

* Creating predictive detection models and profile waveforms requires the Equipment/Quality Predictive Detection tool (sold separately).

Health Monitor Function

By easily creating predictive detection models from past recorded OK/NG data and loading it into GX/GP, you can detect prediction of abnormalities in manufacturing equipment and product quality degradation at an early stage. And because health scores which show the degree of normal and abnormal data consider correlations among multiple data to make determinations, they can capture prediction of abnormalities that are difficult for humans to detect.

- Maximum number of channels: 20
- Shortest recording interval: 100 ms
- Target channels: I/O channel, math channel, and communication channel

Profile Function

By creating a profile waveform from past recorded data and loading it into GX/GP, this waveform can be used as a threshold for process values. Profile waveforms are useful in applications where process values change over time. Also, you can see the deviation from the reference waveform on the screen.

Maximum number of channels: 20

Shortest recording interval: 500 ms */MC option required

Equipment/Quality Predictive Detection tool

* Certain restrictions apply with Equipment/Quality Easy Predictive Detection. See the general specifications for details.

Draw predicted future data with AI

Future Pen

Use acquired data to predict future data, and display predicted future waveforms along with real time data on the trend monitor. Predicted future waveforms help you identify and deal with likely problems as soon as possible.

- Max. channels: 10
- Shortest recording interval: 1 sec.
- Prediction range: Recording interval x 60 points

You can set future alarms based on future data predicted by the future pen.

When a future alarm occurs, notification can be sent by external (digital) output or email.

Dedicated software (free download) is available for loading waveforms and GX/GP settings

Universal viewer

Data files saved on the GX/GP can be viewed and printed. You can perform statistical computation over an area and export to ASCII, Excel, or other formats.

Real time remote monitoring from a web browser

Through a Web browser you can monitor the GX/GP in real time and change settings. You can easily build a seamless, low-cost remote monitoring system with no additional software.

Real time monitoring screen

Enter settings online with a web browser

Computing Alarm		erview .	Alarm sum	mary	Print Config. Window	Snapshot Window	8195			
a Config.	СН						Range			. 4
- 🐼 Al channel settings	en		ype		Range	Span Lower	Span Upper	Calculation		
d- toto 0001-0010	0001	Volt		2V		-2.0000	2.0000	Off		Γ
- C Range	0002	Volt		2V		-2.0000	2.0000	Off		t
- 🐼 Alarm - 🐼 Display settings	0003	Volt	•	2V	•	-2.0000	2.0000	Off	•	T
Calibration correctio	0004	Volt	•	2V.		-2.0000	2.0000	Off	•	Ī
All settings 🗉	0005	Volt	•	2V		-2.0000	2.0000	Off		Г
DI channel settings DO channel settings	0006	Volt	•	2V	•	-2.0000	2.0000	Off		t
Math channel settings	0007	Volt	•	2V	•	-2.0000	2.0000	Off	•	Г
- Display settings	0008	Volt	•	2V	•	-2.0000	2.0000	Off	•	t
Measurement settings	0009	Volt		2V		-2.0000	2.0000	Off		Г
Recording settings Data save settings	0010	Volt	•	2V		-2.0000	2.0000	Off	•	T
Batch settings			-							1
Report settings	9		Ŧ		Ŧ	н	K	Ŧ		ai.
Timer settings		•	_			Copy	Paste Relo	ad Update confis		

Mobile Web

Enables monitoring from a tablet

* Effective for relatively slowly fluctuating data. Not suitable for rapidly fluctuating data. * Certain restrictions apply with the future pen function. See the general specifications for details.

Future /

You can view monitor screens in real time that are identical to the trends, digital, and other displays on the GX/GP main unit.

Bar graph

Digital

With the scroll bar, you can seamlessly scroll between past and current trends. When the sampling interval is 1 second, the instrument displays 1 hour's worth of historical trends.

The setting screen lets you copy AI channel settings and other information to Excel for editing. You can reimport the data into the setting screen after editing.

	A B	0	D	E F	G	H	1	J	K L
1	1 RTD	Pt1 00	0	150 Off	1	2	0	100	off
2	2 RTD	Pt1 00	0	150 Off	1	2	0	100	off
3	3 RTD	Pt1 00	0	150 Off	1	2	0	100	off
4	4 RTD	Pt1 00	0	150 Off	1	2	0	100	off
5	5 RTD	Pt1 00	0	150 Off	1	2	0	100	off
6	6 RTD	Pt1 00	0	150 Off	1	2	0	100	off
7	7 RTD	Pt1 00	0	150 Off	1	2	0	100	off
8	8 RTD	Pt1 00	0	150 Off	1	2	0	100	off
9	9 RTD	Pt1 00	0	150 Off	1	2	0	100	off
10	10 RTD	Pt1 00	0	150 Off	1	2	0	100	off
11									

Enables monitoring via Wi-Fi

Supports the aerospace industry's AMS2750/NADCAP and the automotive industry's IATF16949/CQI-9 for heat treatment applications

Calibration correction schedule control function (/AH option)

Schedule management for periodically executing calibration correction configuration and the like. The correction factor can be set separately for unit and sensor dependency. For AMS2750, we offer TUS software* that can easily create TUS (Temperature Uniformity Survey) reports.

* For information on TUS software, contact your Yokogawa representative

PID control function

Control function

Enables PID and program control

- PID control module
- 2-loops per module, up to 20 loops per system Setpoint program control function (/PG option)

Remote operation and monitoring

The web application enables remote operation and monitoring from a browser.

Built in control screens and display

Various pre-configured control screens and display are available.

Multi-batch Function (/BT option)

Yokogawa's proprietary A/D converter allows the high speed module to measure data points as fast 1ms.

High speed (1 ms) measurement*

Proprietary A/D converter Max. channels

* With 1ch per module.	Model	Scan inter			
At 2 ms, 2 ch per module, and at 5 ms or more, all 4 ch per	Model				
module.	GX/GP10	1ch	5ch		
	GX20-1/GP20-1	1ch	5ch		
	GX20-2/GP20-2	5ch	25ch		

Dual interval measurement with two different scan intervals

Users have the ability to choose two different scan intervals on a single GX/GP system. This allows users the flexibility to measure various types of inputs with two different scan intervals in a single system. For example, this provides for efficient, simultaneous measurement of signals with slow fluctuations such as temperature, and fast-changing signals such as pressure and vibration. Modules can be assigned to measurement groups.

MATH (including reports), and event actions

MATH function (/MT option)

Supports various kinds of math computation, including basic math and functions (square root, logarithms, F value, elapsed time, etc.). Elapsed time calculation allows you to measure the amount of time elapsed after a condition is met. Write formulas using variables for measured or computed data and save or display the results—this saves time and effort on post-processing. Create hourly, daily, monthly, and other reports with the Report function.

Event actions

Ability to assign actions tied to specific events during the operation of the data acquisition station.

Report creation and network functions (/MT option)

Modbus/TCP and Modbus/RTU communications

GX/GP supports Modbus TCP/IP client and server modes for Ethernet communications and Modbus RTU master and slave modes for optional serial communications.

Modbus/TCP (Ethernet connection), Modbus/RTU (RS-422/485 connection)

(Connect up to 16 Modbus/TCP servers, or up to 32 for the GX20-2 and GP20-2.) (Up to 31 Modbus/RTU slaves can be connected.)

EtherNet/IP function (/E1 option)

GX/GP supports EtherNet/IP server functions. You can access GX/GP from PLCs or other devices and load measurement/MATH channels or write^{*} to communication input channels (GX10/GP10: max. 50 ch, GX20-1/GP20-1: max. 300 ch, GX20-2/GP20-2: max. 500 ch).

* Communication channel function (/MC option) is required.

OPC-UA Server (/E3 option)

Data acquired by the GX/GP can be accessed through Ethernet communication from a host system (OPCUA client). Writing from an upstream system to a GX/GP communication channel requires the communication channel function (/MC option).

PROFINET communication (GX90NW Network Module)

By using the GX90NW network module, you can connect the GX/ GP as a secondary I/O device via PROFINET. You can access the GX/ GP from the PLC or other I/O controller, read measurement/math channels, and write to communication channels*. You can easily perform necessary operations for batch processes from the PLC.

* Communication channel function (/MC option) is required.

DARWIN-compatible communication

The GX/GP supports DARWIN communication commands. Use your current DARWIN communication programs as-is on the GX/GP.

* See your dealer or nearest Yokogawa representative for details.

User origina (includes DA communicat Ethernet, RS-422/485, R	RWIN ion commands)	
	CENTUM/STARDOM commun CENTUM: LFS2432, DARWIN/DAQSTATIO	

STARDOM

Communication package (for ALE111 [Ethernet])

NT365AJ DARWIN connection package

CC-Link family SLMP communication (/E4 option)

Protocol function that enables connection from a GX/GP to Mitsubishi Electric PLCs without sequencer programs. You can run the GX/GP as an SLMP client, enabling writing of GX/GP measured data to the PLC and writing of PLC data to communication channels.* *Requires the communication channel function (/MC option).

SLMP communication

Powerful tool for instrument performance evaluation testing (/E2 and /MC options)

Highly precise measured data from power measuring instruments (WT series power analyzers) can be acquired without loss of fidelity on the GX/GP, and recorded and displayed alongside the GX/GP's own measured data. This is ideal for performance evaluation testing because you can record instrument power consumption, temperature, and other phenomena simultaneously.

FTP-based file transfer

The FTP client/server functions allow you to easily share and manage data from a centralized file server.

E-mail messaging function

The GX/GP can send a variety of informative e-mail messages that include alarm notification reports, periodic instantaneous data values, scheduled report data and other information.

Automatic network setup (DHCP) function

Using Dynamic Host Configuration Protocol (DHCP), the GX/ GP can automatically acquire the settings it needs (IP address) for network communications from a DHCP server. This makes it easier than ever to install the unit on a plant network.

Time synchronization with network time servers

GX/GP uses SNTP protocol in client mode to acquire time information from a network time-server. This function allows any number of GX/GP units within a facility to have precisely synchronized time; all units will record data with coordinated date and time stamp information. In addition, GX/GP can function as a server, providing time data to other SNTP client units on the network.

Be confident that recorded data is saved

Measured and calculated data is continuously saved to secure, internal non-volatile memory. At manual or scheduled intervals, the files in memory are copied to the removable media. In addition, the files can be copied and archived to an FTP server.

Because of the inherent reliability and security of non-volatile memory, the possibility of losing data under any operating condition or power failure event is extremely small.

High Capacity Internal Memory

Even longer recording durations, and multichannel recording.

Display data file sample time

Measurement CH = 30 cł	nannels. Math CH = 0 channels.
Internal Memory	500 MB
Display update (minute/div)	30 minutes
Sampling period (s)	60 s
Total sample time	Approx. 2.5 years

Event data file sample time

Measurement CH = 30 channels. Math CH = 0 channels.							
nternal Memory	500 MB						
Sampling period (s)	1 s						
lotal sample time	Approx. 1 months						

Security enhancements

Safely sends and receives customer data.

SSL support function **Digital signatures** FTP client Add electronic signatures to records (PDF) SMTP client

FTP server HTTP server

SSL: An encryption protocol for data sent over TCP/IP networks.

Reliability and durability

Select file formats according to your application

For increased security, measured data can be saved in binary format. This format is very difficult to decipher or modify in traditional text editors or other programs. To enable easy and direct opening of the data in text editors or spreadsheet programs, choose text format. This allows you to work with your measurement data without dedicated software.

a brain			
5.", "DR1", "DR1", "DR2", "DR2", "DR3", "DR3", "DR4", "DR4", "DR5", "DR5			
Mart "Tim", "meet", "W., "W., "W., "W., "W., "W., "W., "W			
8/18","13/16/15P","4", 8.882, 8.836, 8.878, 8.835, -8.885	8.882,	0.070,	8.874, 8.878, 8.978
8/10","12/06/80","8", 8.877, 8.887, 8.875, 8.876, -8.885	8.887.	8.877.	8.478, 8.416, 8.476
0/10","12166-02","#", 8,748, 8,827, 8,758, 8,825, -8,885, 0/10","12166-02","#", 8,685, 8,758, 8,665, 8,758, 8,895,	-8.887,	8.75A	8.819, 8.711, 8.816
	-8.887.	8.472.	1.55, 1.45, 1.55
0/10"/"10:46:00"/"0", 8.411, 8.484, 8.490, 8.494, -8.665, 0/10"/"10:46:00"/"0", 8.571, 8.411, 8.518, 8.490, -8.665	8,000,	8.481,	
BUTH", "10 MOTOR", "F", B.AST,	1.000	8.512.	a sea los plate de plate de plate de plate de la constante de la c
BUTH , THE BOLLET , T. Y. B. AND. B. AND. B. AND. B. AND. B. AND B. AND.	8.881	8.377	and a second
BUTH", "12106-11", T. B.229, B.227, B.225, B.225, -5.884	8.887.	9.727	1.22 Seinen ander ander angege anteren anderen gestellter ein ju aufertegetetetenen befort unter terterente
B/18", "12:06:16", "#", 8,128, 8,729, 8,126, 8,225, -6,698	8.881	8.127	* 25. bergebeiteftel beite to one to one bergite and the second take the second of the
8/19","12/06/19","#", 8,605, 8,128, 8,601, 8,128, -6,698	-8,880.	9.422	
8/14","13/145/20","#", -8.867, 8.825, -8.871, 8.801, -8.866	-8,885	-8.479	
8711","13116:27","#", -8.578, -8.867, -8.175, -8.871, -8.884	-8,880,		
8/14", "13:46:24", "#", -8.272, -8.128, -8.275, -8.175, -8.865			
			- and deale applications enterests (deletes applications)) who are platter and pressure of the second s
		-0.805	
8/10","13:06:50","8", -1.877, -1.862, -1.876, -1.865, 8.868	8.880.	-1.475,	-1-mand. An photophotochan manimizing an exploring the explorator for a content of the statement of the
8/18","13/86/56","8", -1.862, -1.829, -1.865, -1.828, 8.881	8.982.	-1.002.	-1. The distance is "pair to establish the production to be to be an applicable to provide the providence of the prov
0/10***********************************	8.880.	-1.836	-1.00 ALEXA (ALALANIAL MARINI, ALALANIA, ALALA IN AND A ALALA ALALANIA ALALANIA ALALANIA ALALANIA ALALANIA ALA
0/10***********************************	8,882,	-1.007	 The property of the second seco
BUTH", "10 347 367", "F, 91, 921, "B, 925, "B, 936, "B, 927, B, 962, B, 971, "B, 971, B, 971,	1.100	4.922	
BUTH - TREATING - TE, TRATS, T	1.100	1.000	
BUTUT, TELEVISION,	8,882.	1.000	
B(11, 12) B(11, 17, -8,727, -8,457, -8,725, -8,452, 8,461	8.880.	-8.729	
8/14", "12:47:12", "F, -8,457, -8,575, -8,652, -8,571, 8,882		-8.6%	
			មានមនុស្សមន្តរាជាមន្តរាជាមនុស្សមន្តរាជាមន្ត្រីស្រុងហើយ (ស្រុងស្រុងហើយ) អ្នកស្រុងស្រុង (ស្រុងស្រុង) (ស្រុង) (ស្រ
			in the second
			THE REPORT OF THE ADDRESS OF THE PROPERTY OF THE ADDRESS OF THE AD
			A DATE OF A
ASCII data display			THE PROTITION PROTIDED A COMPANY ASSOCIATE STRATEGY A STRATEGY AND A ST
			CONTRACTOR DESCRIPTION OF THE PARTY OF THE REAL PROPERTY AND ADDRESS OF THE PARTY
			A STATE THE REPORT OF A DESCRIPTION OF A
			the values that we wanted the or describe to describe addressed addressed and a second state and a second state
			CONTRACTOR AND ADDRESS AND ADDRESS OF ADDRESS ADDR
			CONTRACT PROPERTY AND AND AND ADDRESS CONTRACTOR DESCRIPTION ADDRESS ADDRE

Binary data display

21 CFR Part 11 support (/AS option)

With the advanced security function, it supports US FDA 21 CFR Part 11 (regulations on electronic recording and electronic signatures) and the Japanese Ministry of Health, Labor, and Welfare's ER/ES guidelines. It also supports data integrity in accordance with ALCOA mentioned in PIC/S, WHO, MHRA and FDA guidance documents. It gives

you access to a credentialbased login function, electronic signatures, audit trails, an anti-tampering function, an Active Directorybased password management function, a sign-in function, and other security features.

Front panel door lock

The front panel door can be locked to prevent mishandling of the power switch or external media.

Analog front end module

A proprietary A/D converter delivers high speed, high precision data acquisition. (High-speed AI, PID Control module)

Reliable dust- and splash-proof construction

Dust and splashproof front panel (Complies with IEC529-IP65 and NEMA No. 250 TYPE 4^{*})

With its IEC529-IP65 compliant front panel, the GX is ready for use in harsh environments.

* Except the external icing test

High environmental worthiness for use in most any setting

The protective sheets on the touch panel display have a special coating on the front and back to prevent damage from scratches, chemicals, and solvents while maintaining a high display clarity and resistance to light interference.

Multitouch operation even with gloves on

Traditional resistive touch screens can detect only one touch point. The built in controller and algorithm of the GX/GP can detect two touch points, allowing intuitive pan and zoom functions during trend monitoring—a first among paperless recorders.

Heat dissipating construction

The GX/GP was built for heat dissipation to ensure an even temperature distribution between module terminals.

Heat analysis result

Actual values support high precision measurement

The measuring accuracies noted in the general specifications have a margin of error that takes into account the product's components and the equipment used for adjustment and testing. However, the actual values calculated from the accuracy testing data upon shipment of the instrument from the factory are as follows.

	Input type	Measuring accuracy ^{*1} (typical value ^{*2})
	20mV	\pm (0.01% of rdg + 5 μ V)
DCV	60mV	\pm (0.01% of rdg + 5 μ V)
	6V (1-5 V)	\pm (0.01% of rdg + 2 mV)
	R, S	± 1.1°C
	В	± 1.5°C
	K (-200.0 to 1370.0 °C)	0.0 to 1370.0°C : \pm (0.01% of rdg + 0.2°C) -200.0 to 0.0°C : \pm (0.15% of rdg +0.2°C)
TC ^{*3}	K (-200.0 to 500.0 °C)	0.0 to 500.0°C : \pm 0.2°C -200.0 to 0.0°C : \pm (0.15% of rdg +0.2°C)
	J	0.0 to 1100.0°C : \pm 0.2°C -200.0 to 0.0°C : \pm (0.10% of rdg +0.2°C)
	Т	0.0 to 400.0°C : \pm 0.2°C -200.0 to 0.0°C : \pm (0.10% of rdg +0.2°C)
	Ν	0.0 to 1300.0°C : \pm (0.01% of rdg + 0.2°C) -200.0 to 0.0°C : \pm (0.22% of rdg +0.2°C)
	Pt100 (-200.0 to 850.0 °C)	\pm (0.02% of rdg + 0.2°C)
RTD	Pt100 (high resolution) (-150.00 to 150.00 °C)	± (0.02% of rdg + 0.16°C)

*1 Applies to GX90XA-10-U2, A/D integration time 16.67 ms or more, General operating conditions: 23 \pm 2 °C, 55 \pm 10% RH, supply voltage 90–132, 180–264 V AC, power frequency within 50/60 Hz \pm 1%, warm-up of 30 minutes or more, no vibrations or other hindrances to performance.

*2 For the measuring accuracy (guaranteed), see the module's general specifications (GS 04L53B01-01EN).

*3 These values do not include the reference junction compensation accuracy.

N	lodel	GX20	GP20	GX10	GP10				
Construction		Vertical panel mount	Portable	Vertical panel mount	Portable				
onstruction	Panel thickness	2 to 26 mm		2 to 26 mm					
isplay		12.1" TFT color LCD (800 \times 600	dots)	5.7" TFT color LCD (640 $ imes$ 480	dots)				
ouch screen		4 wire resistive touch screen, 2	point touch detection						
		10 (When mounted on expansio	on module: 9)	3 (When mounted on expansio	on module: 2)				
ax. no. of conne	ectable modules		nectable modules is limited by the types and combinations of mode		nnels,				
nalog input cha	nnels	Standard: 100, Large memory:	450 (with expansion unit)	Standard: 30, 100 (with expans	sion unit)				
o. of mathemat	ical channels	GX20-1, GP20-1: 100, GX20-2, G	P20-2: 200	50					
o. of communic	ation channels	Standard: 300, Large memory:	500	50					
ternal memory	(flash memory)	Standard: 500 MB , Large mem	ory: 1.2 GB	500 MB					
kternal storage	media		format: FAT32 or FAT16), 1 GB in 3 2.0 compliant (external storage er. 1.1 compliant)						
Communication functions Options		Ethernet (10BASE-T/100BASE-TX), IEEE802.3 compliant (Ethernet frame type: DIX) Connecting configuration: Cascade max. 4 level (10BASE-T), max. 2 level (100BASE-TX), segment length: Max. 100 m E-mail inform function (E-mail client), FTP client function, FTP server function, Web server function, SNTP client function, SNTP server function, DHCP client function Modbus/TCP (client*/server functions) */MC option is required.							
		Serial communications (/C2: RS-232, /C3: RS-422 or RS-485) , Modbus/RTU (master/slave functions) EtherNet/IP communication (PLC communication protocol) (/E1), WT communication (/E2), OPC-UA server (/E3), SLMP communication (Mitsubishi PLC) (/E4)							
ther functions		Security functions: Key lock fun LCD saver function	iction, login function, Clock funct	tions: With calendar function, ac	curacy: \pm 5 ppm (0 to 50°C) ,				
ated supply volt	age		er supply voltage range: 90 to 132 y voltage range: 10 to 20 VDC, on		oltage code "2")				
ited supply free	quency	50/60 Hz							
wer consumpt	ion	Max. 90 VA (100 VAC), max. 110	VA (240 VAC)	Max. 45 VA (100 VAC), max. 60	VA (240 VAC)				
Insulation resistance		Between the Ethernet, RS-422/485, and each insulation terminal and earth: 20 M Ω or greater (at 500 VDC)							
ithstand voltag	e	Between the power terminal ar	nd earth: 3000 V AC (50/60 Hz) fo	r one minute					
ternal	Main Unit	$288 \times 288 \times 169$ (mm)	$288 \times 318 \times 197$ (mm)	144 $ imes$ 144 $ imes$ 174 (mm)	144 $ imes$ 168 $ imes$ 197 (mm)				
mensions $(\times H \times D)$	Including modules	288 × 288 × 220 (mm)	288 × 318 × 248 (mm)	144 × 144 × 225 (mm)	144 × 168 × 248 (mm)				
	-	Approx. 6.0 kg							

Α

	GX90XA												
	DC voltag	e, stano	lard signal, tl	nermocou	ple, RTD ^{*1} ,	DI, DC curr	ent ^{*2} , resis	stance ^{**}	3				
	DC volta	ge	20 mV, 60 mV, 200 mV, 1 V, 2 V, 6 V, 20 V, 50 V, 100 V ^{*4}				C	Pt100, JPt100, Cu10 GE, Cu10 L&N, Cu10 WEED, Cu10 BAILEY, Cu10 (20 [°] C) α =0.00392, Cu10 (20 [°] C) α =0.00393, Cu25 (0 [°] C) α =0.00425, Cu53 (0 [°] C) α =0.00426035, Cu100 (0 [°] C) α =0.00425, J263B, Ni100 (SAMA), Ni100 (DIN), Ni120, Pt25, Pt50, Pt200 WEED, Cu10 GOST, Cu50 GOST, Cu100 GOST, Pt46 GOST, Pt100 GOST, PT500 ^{°3} , PT1000 ^{°3}					
Input type (Inputs: 4/6/10)	Standard	l signal	I 0.4-2 V, 1-5 V			RTD							
	Resistan	ce	20, 200, 2000 Ω			RID	j: P						
			R, S, B, K, E,				DI	DI Level, Contact					
	Thermocouple W97Re3-W75Re25, Kp PR20-40, NiNiMo, W/W XK GOST					i nucan		ent 0	0-20 mA, 4-20 mA				
	1/2/5/10/	20/50/1	00/200/500m	ns, 1/2/5s									
	Scan interval by type												
	Suffix			Scan ir	Scan interval								
	code							100m					5s
	-U2	-	-	_	-	-	-	0	0	0	0	0	0
Scan intervals	-C1	-	-	-	-	-	-	0	0	0	0	0	0
	-L1	-	-	-	-	-	-	-	-	0	0	0	0
	-T1	_	-	-	-	-	-	-	_	-	0	0	0
	-H0	0	0	0	0	0	0	0	0	0	0	0	0
	-R1	-	-	-	-	-	-	0	0	0	0	0	0
	-V1	-	-	-	-	-	—	0	0	0	0	0	0
Power supply and consumption	Supplied	from m	ain unit, pow	er consum	ption: 2 W	or less							
Insulation resistance	Between	input ci	rcuits and int	ernal circu	uitry : 20 M	Ω or greate	er (at 500 V	/ DC)					
Withstand voltage	Between the input circuits and the internal circuitry: 3000 VAC for one minute (current input type and low withstand voltage type: 1500 VAC for one minute, high withstand voltage type: 3700 V AC for one minute) Between analog input channels: 1000 V AC for one minute (excluding b terminals for universal input type) (low withstand voltage type: 400 VAC for one minute, high speed universal type: 3000 V AC for one minute)												
Terminal types	M3 screw terminals or clamp terminals												
Weight	Approx. 0.3 kg												
*1 Cannot be set for the current i	1 21			l), electror	magnetic re	elay type (t	ype suffix	code: -	[1), low withs	tand voltag	e type (ty	pe suffix co	de: -L1) or

high withstand voltage type (type suffix code: -V1).

*2 Can only be set with current input type (type suffix code: -C1).

*3 Can only be set with 4-wire RTD/resistance type (type suffix code: -R1).

*4 Can only be set with high speed universal type (type suffix code: -H0).

Analog output module

Model	GX90YA
Output type (outputs: 4)	Transmission output, manual output
Range	4-20 mA or 0-20 mA
Output update interval	100 msec (shortest)
Load resistance	600 Ω or less
Resolution	0.002%
Power supply and consumption	Supplied from main unit, power consumption: 3W or less
Insulation resistance	Between output circuits and internal circuitry: 20 M Ω (at 500 VDC)
Insulation resistance	Between output channel terminals: 500 VDC, 20 M Ω or greater
Withstand voltage	Between output circuits and internal circuitry: 1500 AC for one minute
, i i i i i i i i i i i i i i i i i i i	Between output circuits: 500 VAC for one minute
Terminal type	M3 screw terminals or clamp terminals
Weight	Approximately 0.2 kg

Digital input module

Model		GX90XD			
		DI or pulse input ^{*1} (Open collector or non-voltage contact)			
Input types (inputs: 16)	ON/OFF detection	Open collector : Voltage of 0.5 V DC or less when ON, leakage current of 0.5 mA or less when OFF Non-voltage contact : Resistance of 200 Ω or less when ON, 50 k Ω when OFF			
Contact rating		12 V DC, 20 mA or more			
Power supply and	d consumption	Supplied from main unit, power consumption : 0.7 W or less			
Insulation resistance		Between input terminals and internal circuitry : 20 M Ω or greater (at 500 V DC)			
Withstand voltage		Between input terminals and internal circuitry : 1500 V AC for one minute			
Terminal types		M3 screw terminals or clamp terminals			
Weight		Approx. 0.3 kg			
Pulse input specifications ^{*1}					
Counting system		The rising edge of the pulse is counted.			
Max. pulse period	t	250Hz (The chattering filter : OFF) 125Hz (The chattering filter : ON)			
Minimum detection	on pulse width	Low (close), High (open), both is 2 ms or more			
Pulse detection p	eriod	1ms			
Pulse measureme	ent accuracy	± 1 pulse			
Pulse count inter	val	Measurement interval			
Filter		The chattering filter can be switched On/Off. (When the chattering filter is off, connect GX/GP so that it is not affected by the noise.)			

*1 Integration requires the math function (/MT option).

Digital output module

Model	GX90YD		
Output types (outputs: 6)	Relay contact (c contact)		
Rated load voltage	30 V DC or 250 V AC or less		
Max. load current	3 A (DC)/3 A (AC), resistance load, each channel		
Power supply and consumption	Supplied from main unit, power consumption: 1.4 W or less		
Insulation resistance	Between output terminals and internal circuitry: 20 M Ω (at 500 VDC)		
Withstand voltage	Between output terminals and internal circuitry: 3000 V AC for one minute		
Terminal types	M3 screw terminals		
Weight	Approx. 0.3 kg		
Expandable I/O			
Model			
Rated supply voltage	100 to 240 VAC (allowable power supply voltage: 90 to 132 VAC, 180 to 264 VAC)		

	50 to 152 VAC, 100 to 204 VAC)
Rated supply frequency	50 to 60 Hz
Power consumption	Max. 40 VA (100 VAC), max. 55 VA (240 VAC)
Insulation resistance	Between Ethernet terminal, isolated terminals, and ground 20 M Ω or more (at 500 VDC)
Withstand voltage	Between power terminal and ground: 3000 VAC (500/60 Hz)/1 min. Between I/O modules and ground: between each module's internal circuitry and depends on the specification of I/O module.
Weight	Approx 3.2 kg (installing 6 modules)

Model		
	Communication speed	10BASE-T/100BASE-TX (Auto)
Ethernet	Port	2 ports
port	Connection cable	STP cable, CAT5 or later
	Communication range	100m
	Communication speed	100BASE-TX full duplex
PROFINET	Port	2 ports
port	Connection cable	PROFINET communication cable
	Communication range	100m
PROFINET communication specifications		Type: PROFINET IO-Device Conformance class: B Support for periodic and aperiodic communication

Digital input/output module

N	Nodel	GX90WD
		DI or pulse input*2 (Open collector or non-voltage contact)
Input type (inputs: 8)	ON/OFF detection	Open collector : Voltage of 0.5 V DC or less when ON, leakage current of 0.5 mA or less when OFF Non-voltage contact : Resistance of 200 Ω or less when ON, 50 k Ω when OFF
	Contact input rating	12 VDC, 20 mA or more
		Relay contact (C contact)
Output type (outputs: 6)	Rated load voltage	When connected to the main circuit (first-order power supply), 150 VAC or less When connected to a circuit derived from the main circuit (second-order power supply), 250 VAC or less (the main circuit is 300 VAC or less and uses an isolated transformer) or 30 VDC or less
	Max. load current	2 A (DC)/2 A (AC), resistive load
Power consul	mption	1.9 W or less
Insulation resistance		Between input terminals and internal circuitry: $20 M\Omega$ or greater (at 500 VDC) Between output terminals and internal circuitry: $20 M\Omega$ or greater (at 500 VDC)
Withstand voltage		Between input terminals and internal circuitry: 1500 VAC for one minute Between output terminals and internal circuitry: 3000 VAC for one minute
Terminal type	es	M3 screw terminals
Weight		Approx. 0.3 kg
ach unit (GX/	GP main unit and e	expandable I/O), can use 1 module only.

Pulse input specifications

Please see the pulse input specifications of Digital Input Module. *2 Integration requires the math function (/MT option).

Pulse Input Module

Model	GX90XP		
Number of inputs	10		
Measurement interval	100 ms (shortest)		
Input type	Contact (open collector, voltage-free contact), level (5 V logic)		
Input range	Up to 20 kHz [*] * 30 Hz when the chattering filter is in use (On)		
Minimum detection pulse width	$25\mu\text{s}^*$ * 15 ms when the chattering filter is in use (On)		
Measurement accuracy	$\begin{array}{l} \mbox{Count} \pm 1 \mbox{ pulse} \\ \mbox{During integration, the following accuracies are added.} \\ \mbox{Upon MATH start: +1 measuring period} \\ \mbox{Upon MATH stop: -1 measuring period} \\ \mbox{* Integration requires the math function (optional code} \\ \mbox{MT}). \end{array}$		
Chattering filter	Removes chattering up to 5 ms (can be turned on/off on each channel)		
Hysteresis width	Approx. 0.2 V		
Contact, transistor rating	Contact: 15 V DC or higher and 30 mA or higher rating. Minimum applicable load current 1 mA or less. Transistor: With the following ratings: Vce>15 VDC, Ic>30 mA		
Maximum input voltage	± 10 V DC		
Insulation resistance	Between input terminals and internal circuitry: 20 M Ω or greater at 500 V DC		
Withstand voltage	Between input terminals and internal circuitry: 1500 V AC for 1 minute		

PID control module

	odel	GX90UT		
Number of control loops	Number of loops	2		
	Measured points	2		
Analog input (measured input)	Measurement type	DC voltage (DCV)/standardized signal, TC/RTD, DI (LEVEL and non-voltage contact)		
	Scan (control) interval	100 ms or 200 ms (system global setting)		
	Outputs	2		
		Power supply for current, voltage pulse, or sensors.		
Analog output (control output/		Current output: 4-20 mA or 0-20 mA		
(control output/ transmission output/ sensor power supply)	Output type	Voltage pulse output: ON voltage = 12 VDC or more (load resistance 600 Ω or more), OFF voltage = 0.1 VDC or less		
		Can be used as a sensor power supply (13.0–18.3 VDC)		
Digital input	Inputs	8		
Digital input (switching the SP,		Non-voltage contact and open collector		
operation mode, etc.)	Input format	Contact rating: 12 VDC or more, 20 mA or more		
	Outputs	8		
Digital output	Output format	Open collector (sink type)		
(of alarms, events, etc.)	Output contact capacity	Max 24 VDC, 50 mA		
Withstand voltage/insulation resistance		See PID control module general specifications (GS 04L51B01-31EN)		
Terminal type		M3 screw terminals		
Weight		Approximately 0.3kg		

GX10/GX20 MODEL AND SUFFIX CODES

Model		ffix de	Optional code	Description		
GX10				Paperless recorder (Panel mount type, Small display)*14		
GX20				Paperless recorder (Panel mount type, Large display) ^{*14}		
Type	-1			Standard (Max. measurement channels: 100 ch)		
Туре	-2			Large memory (Max. measurement channels: 500 ch)*12		
Display language	2	E		English, degF, DST (summer/winter time) ^{*10}		
			/AH	Aerospace heat treatment		
			/AS	Advanced security function (Part 11) ^{*20}		
			/BC	Black cover		
			/BT	Multi-batch function ^{*21}		
			/C2	RS-232 ^{*1}		
			/C3	RS-422/485 ^{*1}		
/CG		/CG	Custom display ^{*15}			
/D5		/D5	VGA output ^{*2}			
/E1		/E1	EtherNet/IP communication (PLC communication protocol)			
Optional	featu	ures	/E2	WT communication ^{*13}		
			/E3	OPC-UA sever		
			/E4	SLMP communication (Mitsubishi PLC) ^{*23}		
			/FL	Fail output, 1 point		
			/LG	Log scale		
	/MT		/MT	Mathematical function (with report function)		
	/MC		/MC	Communication channel function		
			/P1	24 V DC/AC power supply		
			/PG	Program control function ^{*22}		
	/UH		/UH	USB interface (Host 2 ports)		

Analog input module, Digital I/O module:When the built-in module Please add the following suffix codes to the main unit model and specification codes.

Option			
	/UC10	With analog input module, 10 ch (Clamp terminal)	GX90XA-10-U2N-CN x 1
	/UC20	With analog input module, 20 ch (Clamp terminal)*7	GX90XA-10-U2N-CN x 2
	/UC30	With analog input module, 30 ch (Clamp terminal)*8	GX90XA-10-U2N-CN x 3
	/UC40	With analog input module, 40 ch (Clamp terminal)*5	GX90XA-10-U2N-CN x 4
Optional features	/UC50	With analog input module, 50 ch (Clamp terminal)*5	GX90XA-10-U2N-CN x 5
Analog input) ^{*3*11}	/US10	With analog input module, 10 ch (M3 screw terminal)	GX90XA-10-U2N-3N x 1
	/US20	With analog input module, 20 ch (M3 screw terminal)*7	GX90XA-10-U2N-3N x 2
	/US30	With analog input module, 30 ch (M3 screw terminal)*8	GX90XA-10-U2N-3N x 3
	/US40	With analog input module, 40 ch (M3 screw terminal)*5	GX90XA-10-U2N-3N x 4
	/US50	With analog input module, 50 ch (M3 screw terminal)*5	GX90XA-10-U2N-3N x 5
	/CR01	With digital I/O module, (Output:0, Input:16)*8*9	GX90XD-16-11N-3N x 1
	/CR10	With digital I/O module, (Output:6, Input:0)*8*9	GX90YD-06-11N-3N x 1
	/CR11	With digital I/O module, (Output:6, Input:16)*7*8*9	GX90XD-16-11N-3N x 1, GX90YD-06-11N-3N x 1
Optional features Digital I/O) ^{*4}	/CR20	With digital I/O module, (Output:12, Input:0)*6*9	GX90YD-06-11N-3N x 2
Digital 1/0)	/CR21	With digital I/O module, (Output:12, Input:16)*6*9	GX90XD-16-11N-3N x 1, GX90YD-06-11N-3N x 2
	/CR40	With digital I/O module, (Output:24, Input:0)*6*9	GX90YD-06-11N-3N x 4
	/CR41	With digital I/O module, (Output:24, Input:16)*6*9	GX90XD-16-11N-3N x 1, GX90YD-06-11N-3N x 4

*1 /C2 and /C3 cannot be selected together.
*2 /D5 can be specified only for the GX20 or GP20.
*3 Only one option can be specified.
*4 Only one option can be specified.
*5 /UC40, /UC50, /US40 and /US50 cannot be specified for the GX10 or GP10.
*6 /CR20, /CR21, /CR40 and /CR41 cannot be specified for the GX10 or GP10.
*7 If /UC20 or /US20 is specified, /CR11 cannot be specified for the GX10 or GP10.
*8 If /UC30 or /US30 is specified, /CR01, /CR10 and /CR11 cannot be specified for the GX10 or GP10.
*9 A digital input module has M3 screw terminals.

- GX10 or GP10.
 *9 A digital input module has M3 screw terminals.
 *10 The Display language is selectable from English, German, French, Italian, Russian, Korean, Simplified Chinese, Traditional Chinese, Japanese. To confirm the current available languages, please visit the following website.
 UDB there is a free for the current is a free for the cu
- available languages, please visit the following website. URL: http://www.yokogawa.com/ns/language/
 *11 Universal type (type suffix code: -U2). If you need anything other than universal type, purchase it separately.
 *12 Large memory type can be specified only for the GX20/GP20.
 *13 /MC option must be separately specified when the WT communication is selected.
 *14 To connect an expandable I/O, you will need one expansion module for the GX/GP.

GP10/GP20 MODEL AND SUFFIX CODES

Model	S	uffi	cod	8	Optional code	Description
GP10						Paperless recorder (Portable type, Small display) ^{*14}
GP20						Paperless recorder (Portable type, Large display) ^{*14}
	-1					Standard (Max. measurement channels: 100 ch)
Туре	-2					Large memory (Max. measurement channels: 500 ch) ^{*12}
Display language	2	Е				English, degF, DST (summer/winter time) *10
Power su	nnly		1			100V AC, 240V AC*16
Power su	ppiy		2			12 VDC*17
				D		Power cord UL/CSA standard
				F		Power cord VDE standard
				R		Power cord AS standard
Power co	rd			Q		Power cord BS standard
				Н		Power cord GB standard [*]
				Ν		Power cord NBR standard
				W		Screw terminal, power cord not included
					/AH	Aerospace heat treatment
					/AS	Advanced security function (Part 11) ^{*20}
					/BT	Multi-batch function ^{*21}
					/C2	RS-232*1
					/C3	RS-422/485 ^{*1}
					/CG	Custom display
					/D5	VGA output ^{*2}
					/E1	EtherNet/IP communication
Optional	featu	ires			/E2	WT communication ^{*13}
					/E3	OPC-UA sever
					/E4	SLMP communication (Mitsubishi PLC) ^{*23}
					/FL	Fail output, 1 point
					/LG	Log scale
					/MT	Mathematical function (with report function)
					/MC	Communication channel function
					/PG	Program control function ^{*22}
					/UH	USB interface (Host 2 ports)

*15 Creating custom displays requires DXA170 DAQStudio (sold separately).

*15 Creating custom displays requires DXA170 DAQStudio (sold separately). (GX/GP does not have a creation function.)
*16 Power code can be specified the suffix code D, F, R, Q, H, or N.
*17 12 VDC power supply can be specified only for the GP10 without power code (suffix code: W).
*18 Optional code /MT (MATH) required if using the GX90XD's or GX90WD's pulse input.
*19 The /MT option (MATH) is required to perform pulse integration on GX90XP pulse input modules. input modules.

*20 When the Advanced Security function is ON the scan interval is 100 ms or more, and the Dual Interval function and PID modules are unavailable.
*21 When the Multibatch function is ON the scan interval is 500 ms or more, and the

Dual Interval function is unavailable. *22 Using the Program Control function requires the PID control module.

*23 /MC option must be separately specified when writing of PLC data to communication channels.

* When ordering units with built-in modules, the total number of channels allowed is 100 (10 modules) including any modules ordered individually.

Analog input module, Digital I/O module:When the individual modules MODEL and SUFFIX Code (GX90XD) Model Suffix code

Model		Sut	fix co	de		Description
GX90XA						Analog Input Module
Number of	-4					4 channels (-H0 type only)
channels	-6					6 channels (-R1 type only)
channels	-10					10 channels (-C1, -L1, -U2, -T1, -V1)
		-C1				Current, scanner type (isolated between channels)
		-L1				DCV/TC/DI, low withstand voltage scanner type (isolated between channels)
		-U2				Universal, Solid state relay scanner type (3-wire RTD b-terminal common)
Туре		-T1				DCV/TC/DI, Electromagnetic relay scanner type (isolated between channels)
		-H0				High speed universal, individual A/D type (isolated between channels)
		-R1				4-wire RTD/resistance, scanner type (isolated between channels)
		-V1				DCV/TC/DI, high withstand voltage scanner type (isolated between channels)
-			Ν			Always N
Terminal fo	form		-3		Screw terminal (M3)	
Terminal TO				-C		Clamp terminal [*]
Area					Ν	General

MODEL and SUFFIX Code (GX90WD)

Model		Suff	іх сос	le		Description
GX90WD						Digital Input/Output Module
Number of channels	-0806					8 channel DIs, 6 channel DOs
Туре		-01				Input: Open collector/non-voltage contact (shared common), rated 5 VDC Output: Relay, SPDT (NO-C-NC)
_			Ν			Always N
Terminal fo	orm			-3		Screw terminal (M3)
Area					Ν	General

MODEL and SUFFIX Code (GX90YD)

			ffix co			
GX90YD						Digital Output Module
Number of channels	-06					6 channels
Туре		-11				Relay, SPDT(NO-C-NC)
-			Ν			Always N
Terminal fo	rm			-3		Screw terminal (M3)
Area					N	General

MODEL and SUFFIX Code (GX60 Expandable I/O)

Model		Suffix	< code		Description
GX60					I/O Base Unit
Туре	-EX				I/O expansion
Area		N			General
Power sup	oly		1		100V AC, 240V AC
				D	Power cord UL/CSA standard
				F	Power cord VDE standard
				R	Power cord AS standard
Power cord	ł			Q	Power cord BS standard
				н	Power cord GB standard
				N	Power cord NBR standard
				W	Screw terminal (power cord not included)

* With GX90EX (I/O expansion module).

* The dummy cover is not attached to the GX60 when shipped from the factory. If you need the dummy cover, please purchase it separately

MODEL and SUFFIX Code (GX90XP)

Model						Description
GX90XP						Pulse Input Module
Number of channels	-10					10 channels
Туре		-11				DC voltage/open collector/non-voltage contact (shared common), rated 5 VDC
-			Ν			Always N
Terminal fo	rm			-3		Screw terminal (M3)
Terminario				-C		Clamp terminal
Area					Ν	General

MODEL and SUFFIX Code (GX90EX Expansion Module)

Model		Suffix	code		Description
GX90EX					I/O Expansion Module
Port	-02				2 ports
Туре		-TP1			Twisted pair cable
-			N		Always N
Area				-N	General

Model	Suffix code					Description
GX90XD						Digital Input Module
Number of channels	-16					16 channels
Туре		-11				Open collector/Non-voltage, contact (shared common), Rated 5 VDC
-			Ν			Always N
Terminal fo				-3		Screw terminal (M3)
-		-C		Clamp terminal		
Area					Ν	General

MODEL and SUFFIX Code (GX90YA)

Model						
GX90YA						Analog Output Module
Number of channels	-04					4 channels
Туре		-C1				Current output (isolated between channels)
-			Ν			Always N
Torminal fo				-3		Screw terminals (M3)
Terminal form		-C		Clamped terminals		
Area					N	General

MODEL and SUFFIX Code (GX90UT)

Model		Su	ffix co	de		Description
GX90UT						PID Control Module
Number of loops	-02					2 loops
Function		-11				8 DIs, 8 DOs
-			Ν			Always N
Terminal fo	orm			-3		Screw terminals (M3)
Area					Ν	General

MODEL and SUFFIX Code (GX90NW)

Model						
GX90NW*						Network Module
Port	-02					2 ports
Туре		-PN				PROFINET
-			Ν			Always N
Terminal fo	orm			-R		RJ-45 Connector
Area					Ν	General
* The GX90	NW ca	nnot		d for t	ho G	210 12 VDC nower supply model (nower supply

suffix code: 2).

Standard Accessories

Product	
Mounting bracket (GX10 or GX20)	2
SD memory card (1GB)	1
Stylus	1
Tag sheet	1
Sheet (paper)	1
Power cord (for GP10 or GP20 of AC power supply only)	1

Optional Accessories (Sold Separately)

Product	Part Number/Model
SD memory card (1GB)	773001
Mounting bracket (for GX10 or GX20)	B8740DY
Stylus pen (touch pen)	B8740BZ
Shunt resistor for screw terminal (M3) (10 $\Omega\pm$ 0.1%)	415942
Shunt resistor for screw terminal (M3) (100 $\Omega\pm$ 0.1%)	415941
Shunt resistor for screw terminal (M3) (250 $\Omega\pm$ 0.1%)	415940
Shunt resistor for clamp terminal (10 $\Omega\pm$ 0.1%)	438922
Shunt resistor for clamp terminal (100 $\Omega\pm$ 0.1%)	438921
Shunt resistor for clamp terminal (250 $\Omega\pm$ 0.1%)	438920
Dummy cover	B8740CZ
Validation Documents (For /AS option)	773230

Application Software (sold separately)

Model		
DXA170	DAQStudio	Windows 8.1/10
GA10	Data Logging Software	Windows 8.1/10/11 Windows Server 2012/2016/2019

Calibration certificate (sold separately)

When ordering the GX10/GX20/GP10/GP20 with options (analog input), the calibration certificate for the modules is included in and shipped with the calibration certificate of the main unit. When ordering an analog input module separately, each module gets its own calibration certificate (one certificate per module).

Test certificate (QIC, sold separately)

When ordering the GX10/GX20/GP10/GP20 with options (analog/digital I/O), the QIC for each module is included in and shipped with the QIC of the main unit. When ordering analog input modules and digital I/O modules separately, each module gets its own QIC (one QIC per module).

User's Manual

Product user's manuals can be downloaded or viewed at the following URL. URL: www.smartdacplus.com/manual/en/

Equipment/Quality Predictive Detection tool

(This tool is required to create Predictive detection model and Profile waveform. You need to apply online before purchasing the cloud version of Equipment/Quality Predictive Detection tool. http://www.smartdacplus.com/)

Cloud version			Offline version			
Model	Suffix code	Description	Model	Suffix code	Description	
CE10		Cloud Equipment/Qualtiy Predictive Detection tool (Validity period : 12 months)	OE10		Offline Equipment/Quality Predictive Detection tool with Predictive Detection model download license for 1 unit	
Optional code	/AU	Predictive Detection model download license for SMARTDAC+ 1 unit				
Model	Suffix code	Description		0.11		
CE10L	Sullix code	Description Cloud Predictive Detection model download license	Model	Suffix code	Description Offline Predictive Detection model download license	
CEIUL	-01	SMARTDAC+ 1 unit	OE10L Number of units using	-01	SMARTDAC+ 1 unit	
	• •			• •		
Number of	-03	SMARTDAC+ 3 units		-03	SMARTDAC+ 3 units	
units using	-05	SMARTDAC+ 5 units		-05	SMARTDAC+ 5 units	
the predictive	-10	SMARTDAC+ 10 units	the predictive	-10	SMARTDAC+ 10 units	
detection model	-20	SMARTDAC+ 20 units	detection model	-20	SMARTDAC+ 20 units	
	-50	SMARTDAC+ 50 units	model	-50	SMARTDAC+ 50 units	
	-A0	SMARTDAC+ 100 units		-A0	SMARTDAC+ 100 units	
GX10	144 (5.67)	225 (8.86)'1 174 (6.85)'2 23 (0.91) GX20 288 (11.34) 288 (11.34) 0 0 0 0 0 0 0 0 0 0 0 0 0	220 (8.66) ¹ 169 (6.65) ²	GX60	412.5(16.24) 48. 156(6.14) 162(6.38) (1.89) 6-05 holes (1.89) 9-17 (1.99) 9-17	
GP10 		GP20 288 (11.34) 318 (12.52) 248 (9.76) ⁻¹		, mountin bottom,	anel-mounting the GX10/GX20, use two panel g brackets. Locate the brackets on the top and or left and right. iled dimensions and panel cutouts, please see	

Configuration example

197 (7.76)^{•2}

248 (9.76)*1

30 ch (analog input) GX20-1E GX90XA-10-U2N-3N

GX20-2E X 1 GX90EX-02-TP1N-N (for × 3

GX60-EXN1W (including GX60 Expanda GX90XA-10-U2N-3N

120 ch (ana

Analog input module scan interval and measurement type

Туре	Channels	Scan interval (shortest)	Scanner
Universal (-U2)	10	100ms	SSR
Low withstand voltage relay (-L1)	10	500ms	SSR
Electromagnetic relay (-T1)	10	1s	Relay
DC current input (-C1)	10	100ms	SSR
High withstand voltage (-V1)	10	100ms	SSR
High speed universal (-H0)	4	1ms	-
4-wire RTD/resistance (-R1)	6	100ms	SSR

GM Data Acquisition System

Data logger that's flexible in form and function

This is a flexible data logger that combines the safety and ease of use that is made possible through our years of experience in measurement technology. Modules and functions are interchangable with the GX/GP.

Flexibly scales to expand the number of channels

- Measure up to 420 ch Slide lock for easy attachment and removal
- Easy access from a web browser
- Hardware settings Real time monitoring
- Supports mobile connection

Bluetooth communication

Monitor and configure from a tablet

the General Specifications (GS 04L51B01-01EN).

Unit: mm (approx : inch) 1 With module *2 Without modules

(When ordering individual instruments) (with supply voltage of 100 to 240 VAC, universal input, and screw terminal)

log input)			450 ch (analog input)		
	Х	1	GX20-2E	×	
main unit)	×	1	GX90EX-02-TP1N-N(for main unit) GX60-EXN1W	Х	
lable I/O)	Х	1	(including GX60 Expandable I/O)	Х	(
	×	12	GX90XA-10-U2N-3N	\times	4
			and the state		

0 0 0 0 0 Universal 0 Mid-price 0 0 0 Noise-resistance mA only High withstand voltage \bigcirc \bigcirc \cap High speed measurement 4-wireRTD

Open network

Supports Modbus, Ethernet/IP, SLMP, OPC-UA server

Designed for high performance, high reliability

High measurement accuracy

Redundancy through internal and external memory, plus media Environmental and noise resistance

Wide operating temperature range: -20 to 60 DEGC

Data Logging Software GA10 (sold separately)

Centrally acquire data from multiple devices on a PC

GA10 is a PC based software package that acquires real time data from SMARTDAC+ data acquisition systems and other devices connected to a network. Connected PCs can monitor real time and historical data, which can be stored on a PC harddrive or centrally on a network drive.

Supports many other models. For details, see the GA10 catalog.

Application example

Data monitoring in manufacturing sites

Monitor factory data from the office. You can also add clients and share data across multiple PCs.

Effect: No more moving around large factories to do work!

WEB site

http://www.smartdacplus.com/

Recording data from multiple equipments

Saves testing/manufacturing equipment data on a PC. In addition to simultaneous acquisition, you can acquire data from different equipment at different timing (multilogging).

Exce

Effect: Manage all data on the PC, one set of equipment at a time!

User Registration Request

Please register to the following Partner Portal Member Site. You can use various services such as confirmation of purchased product information, download of related materials and software.

Customer Portal Member Site >>> https://myportal.yokogawa.com/

OpreXTM Yokogawa achieves operational excellence by providing products, services, and solutions based on the OpreX comprehensive brand that cover everything from business management to operations.

Co-innovating tomorrow and Oprex are trademarks or registered trademarks of Yokogawa Electric Corporation. All brand or product names of Yokogawa Electric Corporation in this bulletin are trademarks or registered trademarks of Yokogawa Electric Corporation. All other company brand or product names in this bulletin are trademarks or registered trademarks of their respective holders.

Before operating the product, read the instruction manual thoroughly for proper and safe operation.

YOKOGAWA ELECTRIC CORPORATION YOKOGAWA CORPORATION OF AMERICA YOKOGAWA EUROPE B.V. YOKOGAWA ENGINEERING ASIA PTE. LTD.

https://www.yokogawa.com/ https://www.yokogawa.com/us/ https://www.yokogawa.com/eu/ https://www.yokogawa.com/sg/

Subject to change without notice All Rights Reserved. Copyright O 2012, Yokogawa Electric Corporation

Co-innovating tomorrow $^{\scriptscriptstyle{\mathrm{M}}}$

AZ-S-2E Printed in Japan, 408(AZ) [Ed:14/d]